Southern Appalachian Digital Collections

Western Carolina University (20) View all

Secretary of Agriculture report on watersheds

items 18 of 41 items
  • wcu_great_smoky_mtns-14398.jpg
Item
?

Item’s are ‘child’ level descriptions to ‘parent’ objects, (e.g. one page of a whole book).

  • 18 APPALACHIAN AND WHITE MOUNTAIN WATERSHEDS. The Weather Bureau carefully investigated the damage along the Ohio River from the floods of January and March, 1907, and found that the property loss, not including damage to soil and river channel, amounted to $9,900,000, most of which was sustained by the city of Pittsburg. The report of the Geological Survey shows that the flow of 1,950 square miles, or 35 per cent of the drainage area of the Monongahela, can be stored for a full year, and that by such storage the low-water stage in the Monongahela can be increased by 6 feet throughout the longest dry-season period ever known in the history of the river. The measurements show that by the storage of this water in the Monongahela an increase of stage of 3 feet can be effected in the Ohio River at Wheeling for a period considerably longer than four months. This means a distinct improvement for both navigation and flood conditions. With 35 per cent of the Monongahela water subject to storage, the flood damage at Pittsburg and Wheeling would be almost eliminated. With the minimum stage of the Ohio at Wheeling increased by 3 feet, the coveted 9-foot stage between Pittsburg and Cincinnati would all but be secured. The streams which drain the White Mountain region are all navigable in their lower courses. The Connecticut River is the most important for its commerce. Commerce in considerable volume is carried on from the mouth to Hartford, 30 miles, and small boats by way of the Windsor Locks may ascend as far as Holyoke, Mass. The Androscoggin, Kennebec, and Saco in their upper courses are used to a large extent for the driving of logs. The lower Kennebec supports an extensive ice traffic. FOREST DETERMINES POSSIBILITIES OF WATER POWER AND ARTIFICIAL STORAGE. The forest bears a vital relation to successful utilization of water power and effectual artificial storage. No matter what its purpose or design, any reservoir system developed in the Southern Appalachians is foredoomed to failure unless the watersheds which feed it are kept under forest. The present torrential discharge of the streams is due to the extent to which the forest has been cut away or damaged. The more this sole equalizing factor is lessened, the more extreme will be the floods on the one hand and low-water stages on the other. A mountain watershed denuded of its forest, with its surface hardened and baked by exposure, will discharge its fallen rain into the streams so quickly that overwhelming floods will descend in wet seasons. In discharging in this torrential way the water carries along great portions of the land itself. Deep gullies are washed in the fields, and the soil, sand, gravel, and stone are carried down the streams to points where the current slackens. The stone and gravel are likely to be dropped in the upper channel of the stream, to be rolled along by subsequent floods, but the sand and silt are carried down to the still water of the first reservoir, where they are deposited. It is this silting up that makes uncertain any reservoir system outside the limits of a forested watershed. Since the extensive removal of the forest on the upper watersheds there has been a vast accumulation of silt, sand, and gravel in the upper stream courses. Examples of reservoirs completely filled are already to be seen on almost every stream. Removal of the silt is
Object
?

Object’s are ‘parent’ level descriptions to ‘children’ items, (e.g. a book with pages).