Southern Appalachian Digital Collections

Western Carolina University (20) View all

Secretary of Agriculture report on watersheds

items 17 of 41 items
  • wcu_great_smoky_mtns-14397.jpg
Item
?

Item’s are ‘child’ level descriptions to ‘parent’ objects, (e.g. one page of a whole book).

  • APPALACHIAN AND WHITE MOUNTAIN WATERSHEDS. 17 It was as efficient as would have been a system of lakes. It had power to hold back the water on a steep mountain side almost as though the ground were level. Thus, in a great measure, it equalized all influences which contributed to the variability of the run-off. This balance of conditions began to be disturbed when the forest was cleared from great areas of foothill land. It has become strongly disarranged since the clearing has extended far up the mountains and since the forest has been opened by cutting and the humus consumed by fire over almost the entire area. In view of the fact that over large areas of the upper watersheds of the Southern Appalachian streams the forest can never be restored, the possibilities of artificial storage become important. In the report of the Geological Survey on Relation of Southern Appalachian Mountains to Inland Water Navigation data are presented for each navigable stream to show the available reservoir sites, the amount of water which can be stored, and the effect of such stored water on the minimum river stage for specified periods. The data for some streams show that remarkable results can be accomplished. As a striking example one may consider the Savannah, which during the greater part of the year is navigable for steamboats drawing from 4 to 5 feet of water, but during low-water seasons there are various shoals in the upper part of the river with a depth of not over 3 feet. In pursuance of the plan of improvement outlined by the Chief of Engineers, United States Army, the United States had expended in the improvement of this river up to June 30, 1905, the sum of $517,643, of which $58,935 was expended above Augusta. The estimate of cost to complete the project is $645,045. Expenditures on the upper portion of the river have now been suspended on the ground that the permanent improvement of this portion would involve an expenditure out of proportion to the prospective commercial benefits. Considering this condition, it is of interest to note what can be done by means of a storage system on this river. Topographic surveys have located 14 reservoir sites, which, if developed, would have a capacity equal to the annual run-off of 1,670 square miles of drainage area, or 23 per cent of the drainage area above Augusta. With these reservoirs developed and filled, the amount of water which could be stored would be sufficient to maintain an added depth of 9 feet at Augusta for a period of 118 days, or practically four months. Even with the reservoirs half full at the beginning of the low-water season there would still be water enough to add 5 feet to the depth of the river for 130 days. The Savannah, already a river of great commercial importance, would have its commerce increased many fold if only a good navigable depth could be maintained at all seasons. It is not pertinent here to consider whether at a future time it may be desirable to plan a general system of such reservoirs. It is important to point out that every reservoir developed for water power in the mountains or foothills helps conditions in the navigable courses of the streams. Owing to the great water-power development which is taking place, this aid is likely to be of considerable value in the future. When in addition to seeking improved conditions of navigation it is of equal or greater importance to control the floods, as in the Monongahela River, such work may become entirely feasible. S. Doc. 91, 60-1 2
Object
?

Object’s are ‘parent’ level descriptions to ‘children’ items, (e.g. a book with pages).